Menu

смотреть

Гироскоп (от др.-греч. вращение и др.-греч. смотреть) устройство, способное измерять изменение углов ориентации связанного с ним тела относительно инерциальной системы координат, как правило основанное на законе сохранения вращательного момента (момента импульса).

Классификация

Основные типы гироскопов по количеству степеней свободы:

  • 2-степенные,
  • 3-степенные.

Основные два типа гироскопов по принципу действия:

  • механические гироскопы,
  • оптические гироскопы.

По режиму действия гироскопы делятся на:

  • датчики угловой скорости,
  • указатели направления.

Однако одно и то же устройство может работать в разных режимах в зависимости от типа управления.

Среди механических гироскопов выделяется роторный гироскоп  ось вращения которого способна изменять ориентацию в пространстве. При этом скорость вращения гироскопа значительно превышает скорость поворота оси его вращения. Основное свойство такого гироскопа способность сохранять в пространстве неизменное направление оси вращения при отсутствии воздействия на неё моментов внешних сил.

Впервые это свойство использовал Фуко в 1852 г. для экспериментальной демонстрации вращения Земли. Именно благодаря этой демонстрации гироскоп и получил своё название от греческих слов вращение, наблюдаю.

При воздействии момента внешней силы вокруг оси, перпендикулярной оси вращения ротора, гироскоп начинает поворачиваться вокруг оси прецессии, которая перпендикулярна моменту внешних сил.

Например, если позволить оси гироскопа двигаться только в горизонтальной плоскости, то ось стремится установиться по меридиану, при том так, что вращение прибора происходит так же, как и вращение Земли. Если же оси позволить двигаться вертикально (в плоскости меридиана), то она стремится установиться параллельно оси земли. Именно это замечательное свойство гироскопа и определило широкое применение прибора.

Данное свойство напрямую связано с возникновением так называемой кориолисовой силы. Так, при воздействии момента внешней силы гироскоп поначалу будет вращаться именно в направлении действия внешнего момента (нутационный бросок). Каждая частица гироскопа будет таким образом двигаться с переносной угловой скоростью вращения из-за момента. Но роторный гироскоп, помимо этого, и сам вращается, значит, каждая частица будет иметь относительную скорость. Следовательно, возникнет кориолисова сила, которая будет заставлять гироскоп двигаться в перпендикулярном приложенному моменту направлении, то есть прецессировать. Прецессия вызовет кориолисову силу, момент которой скомпенсирует момент внешней силы.

Гироскопический эффект вращающихся тел есть проявление коренного свойства материи её инертности.

Упрощённо, поведение гироскопа описывается уравнением:

,

где векторы и являются, соответственно, моментом силы, действующей на гироскоп, и его моментом импульса, скаляр  его моментом инерции, векторы и угловой скоростью и угловым ускорением.

Отсюда следует, что момент силы , приложенный перпендикулярно оси вращения гироскопа, то есть перпендикулярный , приводит к движению, перпендикулярному как , так и , то есть к явлению прецессии. Угловая скорость прецессии гироскопа определяется его моментом импульса и моментом приложенной силы:

,

то есть обратно пропорциональна скорости вращения гироскопа.

Вибрационные гироскопы устройства, сохраняющие свои колебания в одной плоскости при повороте. Данный тип гироскопов является намного более простым и дешёвым при сопоставимой точности по сравнению с роторным гироскопом. В зарубежной литературе также употребляется термин Кориолисовы вибрирующие гироскопы так как принцип их действия основан на эффекте силы Кориолиса, как и у роторных гироскопов. Например, вибрационные гироскопы применяются в системе измерения наклона электрического самоката Сигвей 1. Система состоит из пяти вибрационных гироскопов, чьи данные обрабатываются двумя микропроцессорами.

Два подвешенных грузика вибрируют на плоскости в MEMS гироскопе с частотой .

При повороте гироскопа возникает Кориолисово ускорение равное , где  скорость и  угловая частота поворота гироскопа. Горизонтальная скорость колеблющегося грузика получается как : , а положение грузика в плоскости . Внеплоскостное движение , вызываемое поворотом гироскопа равно:

где:
 масса колеблющегося грузика.
 коэффициент жёсткости пружины в направлении, перпендекулярном плоскости.
 величина поворота в плоскости перпендекулярно движению колеблющегося грузика.
  • Пьезоэлектрические гироскопы.
  • Твердотельные волновые гироскопы.
  • Камертонные гироскопы.
  • Вибрационные роторные гироскопы
  • МЭМС гироскопы.

Делятся на волоконно-оптические и лазерные гироскопы. Принцип действия основан на эффекте Саньяка и теоретически объясняется с помощью СТО. Согласно СТО скорость света постоянна в любой инерциальной системе отсчёта. В то время как в неинерциальной системе она может отличаться от c. При посылке луча света в направлении вращения прибора и против направления вращения разница во времени прихода лучей (определяемая интерферометром) позволяет найти разницу оптических путей лучей в инерциальной системе отсчёта, и, следовательно, величину углового поворота прибора за время прохождения луча.

История

До изобретения гироскопа человечество использовало различные методы определения направления в пространстве. Издревле люди ориентировались визуально по удалённым предметам, в частности, по Солнцу. Уже в древности появились первые приборы: отвес и уровень, основанные на гравитации. В средние века в Китае был изобретён компас, использующий магнетизм Земли. В Европе были созданы астролябия и другие приборы, основанные на положении звёзд.

Гироскоп изобрёл Иоганн Боненбергер и опубликовал описание своего изобретения в 1817 году. Однако французский математик Пуассон ещё в 1813 году упоминает Боненбергера как изобретателя этого устройства. Главной частью гироскопа Боненбергера был вращающийся массивный шар в кардановом подвесе. В 1832 году американец Уолтер Р. Джонсон придумал гироскоп с вращающимся диском5. Французский учёный Лаплас рекомендовал это устройство в учебных целях. В 1852 году французский учёный Фуко усовершенствовал гироскоп и впервые использовал его как прибор, показывающий изменение направления (в данном случае Земли), через год после изобретения маятника Фуко, тоже основанного на сохранении вращательного момента. Именно Фуко придумал название гироскоп. Фуко, как и Боненбергер, использовал карданов подвес. Не позднее 1853 года Фессель изобрёл другой вариант подвески гироскопа.

Преимуществом гироскопа перед более древними приборами является то, что он правильно работает в сложных условиях (плохая видимость, тряска, электромагнитные помехи). Однако гироскоп быстро останавливался из-за трения.

Во второй половине XIX века было предложено использовать электродвигатель для разгона и поддержания движения гироскопа. Впервые на практике гироскоп был применён в 1880-х годах инженером Обри для стабилизации курса торпеды. В XX веке гироскопы стали использоваться в самолётах, ракетах и подводных лодках вместо компаса или совместно с ним.

Применение гироскопов в технике

Свойства гироскопа используются в приборах гироскопах, основной частью которых является быстро вращающийся ротор, который имеет несколько степеней свободы (осей возможного вращения).

Чаще всего используются гироскопы, помещённые в карданов подвес (см. рис.). Такие гироскопы имеют 3 степени свободы, то есть он может совершать 3 независимых поворота вокруг осей АА', BB' и CC', пересекающихся в центре подвеса О, который остаётся по отношению к основанию A неподвижным.

Гироскопы, у которых центр масс совпадает с центром подвеса O, называются астатическими, в противном случае статическими гироскопами.

Для обеспечения вращения ротора гироскопа с высокой скоростью применяются специальные гиромоторы.

Для управления гироскопом и снятия с него информации используются датчики угла и датчики момента.

Гироскопы используются в виде компонентов как в системах навигации (авиагоризонт, гирокомпас, ИНС и т. п.), так и в нереактивных системах ориентации и стабилизации космических аппаратов.

Системы стабилизации бывают трех основных типов.

  • Система силовой стабилизации (на 2-степенных гироскопах).

Для стабилизации вокруг каждой оси нужен один гироскоп. Стабилизация осуществляется гироскопом и двигателем разгрузки, в начале действует гироскопический момент, а потом подключается двигатель разгрузки.

  • Система индикаторно-силовой стабилизации (на 2-степенных гироскопах).

Для стабилизации вокруг каждой оси нужен один гироскоп. Стабилизация осуществляется только двигателями разгрузки, но в начале появляется небольшой гироскопический момент, которым можно пренебречь.

  • Система индикаторной стабилизации (на 3-степенных гироскопах)

Для стабилизации вокруг двух осей нужен один гироскоп. Стабилизация осуществляется только двигателями разгрузки.

Постоянно растущие требования к точностным и эксплуатационным характеристикам гиро-приборов заставили ученых и инженеров многих стран мира не только усовершенствовать классические гироскопы с вращающимся ротором, но и искать принципиально новые идеи, позволившие решить проблему создания чувствительных датчиков для измерения и отображения параметров углового движения объекта.

В настоящее время известно более ста различных явлений и физических принципов, которые позволяют решать гироскопические задачи. В России и США выданы тысячи патентов и авторских свидетельств на соответствующие открытия и изобретения.

Поскольку прецизионные гироскопы используются в системах наведения стратегических ракет большой дальности, во время холодной войны информация об исследованиях, проводимых в этой области, классифицировалась как секретная.

Перспективным является направление развития квантовых гироскопов.

Сегодня созданы достаточно точные гироскопические системы, удовлетворяющие большой круг потребителей. Сокращение средств, выделяемых для военно-промышленного комплекса в бюджетах ведущих мировых стран, резко повысило интерес к гражданским применениям гироскопической техники. Например, сегодня широко распространено использование микромеханических гироскопов в системах стабилизации автомобилей или видеокамер.

По мнению сторонников таких методов навигации, как GPS и ГЛОНАСС, выдающийся прогресс в области высокоточной спутниковой навигации сделал ненужными автономные средства навигации (в пределах зоны покрытия спутниковой навигационной системы (СНС), то есть в пределах планеты). В настоящее время СНС системы по параметрам массы, габаритов и стоимости превосходят гироскопические.

Сейчас разрабатывается система навигационных спутников третьего поколения. Она позволит определять координаты объектов на поверхности Земли с точностью до единиц сантиметров в дифференциальном режиме, при нахождении в зоне покрытия корректирующего сигнала DGPS. При этом якобы отпадает необходимость в использовании курсовых гироскопов. Например, установка на крыльях самолета двух приемников спутниковых сигналов, позволяет получить информацию о повороте самолета вокруг вертикальной оси.

Однако системы GPS оказываются неспособны точно определять положение в городских условиях, при плохой видимости спутников. Подобные проблемы обнаруживаются и в лесистой местности. Кроме того прохождение сигналов СНС зависит от процессов в атмосфере, препятствий и переотражений сигналов. Автономные же гироскопические приборы работают в любом месте - под землёй, под водой, в космосе.

В самолётах GPS оказывается точнее акселерометров на длинных участках. Но использование двух GPS-приёмников для измерения углов наклона самолета даёт погрешности до нескольких градусов. Подсчёт курса путём определения скорости самолёта с помощью GPS также не является достаточно точным. Поэтому, в сегодняшних навигационных системах оптимальным решением является комбинация спутниковых и гироскопических систем, называемая интегрированной(комплексированной) ИНС/СНС системой.

За последние десятилетия, эволюционное развитие гироскопической техники подступило к порогу качественных изменений. Именно поэтому внимание специалистов в области гироскопии сейчас сосредоточилось на поиске нестандартных применений таких приборов. Открылись совершенно новые интересные задачи: разведка полезных ископаемых, предсказание землетрясений, сверхточное измерение положений железнодорожных путей и нефтепроводов, медицинская техника и многие другие.

Значительное удешевление производства МЭМС-гироскопов привело к тому, что они начинают использоваться в смартфонах и игровых приставках.

Появление МЭМС-гироскопа в новом смартфоне Apple iPhone 4 открывает новую революцию в 3D-играх и в формировании дополненной реальности. Уже сегодня, разные производители смартфонов и игровых приставкок собираются использовать МЭМС-гироскопы в своих продуктах. Вскоре появятся приложения на смартфонах и игровых приставках, которые сделают компьютерный экран окном в другой виртуальный мир. Например в 3D-игре, пользователь перемещая смартфон или мобильную игровую консоль, увидит другие стороны игровой виртуальной реальности. Поднимая смартфон вверх пользователь увидит виртуальное небо, а опуская вниз увидит виртуальную землю. Вращая по сторонам света может осмотреться вокруг внутри виртуального мира. Гироскоп даёт программе данные о том, как ориентирован смартфон относительно реального мира, а программа связывает эти данные с виртуальным миром. Таким же образом, но уже не в игре, можно использовать гироскоп для формирования дополненной реальности.

Так же гироскоп стал применяться в управляющих игровых контроллерах, таких как: Sixaxis для Sony PlayStation 3 и Wii MotionPlus (англ.) для Nintendo Wii. В обоих перечисленных контроллерах использованы два, дополняющих друг друга, пространственных сенсора: акселерометр и гироскоп. Впервые игровой контроллер, умеющий определять своё положение в пространстве, был выпущен компанией Nintendo Wii Remote для игровой приставки Wii, но в нем используется только 3-х мерный акселерометр. 3-х мерный акселерометр не способен давать точное измерение параметров вращения при высоко динамичных движениях. И именно поэтому в новейших игровых контроллерах: Sixaxis и Wii MotionPlus (англ.), кроме акселерометра, был использован дополнительный пространственный сенсор гироскоп.

Игрушки на основе гироскопа

Самыми простыми примерами игрушек, сделанных на основе гироскопа, являются йо-йо, волчок (юла) и модели вертолетов2. Кроме того, существуют кистевые тренажёры, которые также работают на гироскопическом эффекте (гиротренажёры).

Кафедры

  • Сайт каф. Системы управления летательными аппаратами ХАИ им. Н. Е. Жуковского
  • Сайт каф. Автоматика и электронное приборостроение КАИ им. А. Н. Туполева
  • Сайт каф. Приборы и системы ориентации, стабилизации и навигации МГТУ им. Н.Э Баумана
  • Сайт каф. Автоматизированные комплексы ориентации и навигации Московского авиационного института
  • Сайт каф. Приборы и системы ориентации, стабилизации и навигации СПбГУ ИТМО
  • Сайт каф. Теоретической механики СГАУ пособие Петрищев В. Ф. Элементы теории гироскопа и его применение для управления космическими аппаратами
  • Сайт каф. "Приборы и системы управления летательными аппаратами, НТУУ КПИ
  • Сайт каф. "Приборы и системы ориентации и навигации, НТУУ КПИ
  • Официальный сайт Института Энергомашиностроения и Механики, Московского Энергетического Института (ТУ)
  • Сайт каф. Приборы и системы ориентации, стабилизации и навигации ТулГУ
  • Сайт каф."Приборостроение" СГТУ

Сайт управляется системой uCoz